If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2=33
We move all terms to the left:
3p^2-(33)=0
a = 3; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·3·(-33)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*3}=\frac{0-6\sqrt{11}}{6} =-\frac{6\sqrt{11}}{6} =-\sqrt{11} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*3}=\frac{0+6\sqrt{11}}{6} =\frac{6\sqrt{11}}{6} =\sqrt{11} $
| 5x-12=4x–10 | | 3=(2y+10) | | 68=3(6x-1)-7(1-3x) | | 8(5-6x)=-7-x | | 6x(4x-12)=0 | | 1/4(16+8x)=-22 | | 25^-3b=1/625 | | 55,000=10,000(1.04)8x | | 329=-7(1+6x) | | .04(x)=200 | | 329=-7(1+6x) | | -6(-6x+2)=-228 | | -6(-6x+2)=-228 | | 1/2(119+27)=(5x-7) | | -14=-21+x | | 74+2x=45 | | g+2g-4=14 | | 1=(7x+7) | | -81=-3(u-72) | | 5(3)^x=3645 | | (10x+75)+(6+9x)=223 | | -2(w-29)=-66 | | 5^4x=1/625 | | -2x-10=4x-22 | | -8x-3(2x+1)=67) | | 4x+2-125= | | 78=5r+3 | | 38=x/15 | | 7(q+6)=84 | | -21=-7(t+79) | | 4x-7-6x-11=0 | | 24=4+7x |